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Catalytic enantioselective reactions of enolates or enol ethers
with aldehydes (i.e., aldol reactions) have been intensively inves-
tigated, and remarkable success has been reported in recent years.1

In contrast, corresponding catalytic asymmetric processes in which
acyl derivatives (acid halides or anhydrides) serve as the electro-
philic component have not yet been described (eq 1).2 With respect
to non-asymmetric catalysis of these transformations, achiral Lewis
acids such as ZnBr2 have been shown to be effective;3 to date,
however, Lewis bases (e.g., fluoride) have not proved to be useful,
leading instead to undesired O-acylation.4

During the past several years, we have been pursuing the
development of planar-chiral derivatives of DMAP (for example,
1-4) as enantioselective nucleophilic catalysts.5 As part of this
program, we decided to explore the possibility that these complexes
could serve as effective catalysts for asymmetric intermolecular
C-acylation processes (eq 1).6,7

A pathway by which this objective might be achieved is outlined
in Figure 1 for the acylation of a silyl ketene acetal by acetic
anhydride. Initially, the catalyst reacts with the anhydride to generate
an acylpyridinium ion, which should be a more active acylating
agent than acetic anhydride itself, along with an acetate counterion
(5).8 The Lewis-basic acetate then complexes to the Lewis-acidic
silicon of the silyl ketene acetal, affording an enolate.9 The activated
components of this new ion pair (6) then couple to furnish the
desired product (7), which bears a new carbon-carbon bond and
a quaternary stereocenter,10 and to regenerate the catalyst.

In early studies of the process illustrated in eq 2,11 we determined
that, in the absence of a catalyst, there is no reaction between the
silyl ketene acetal and acetic anhydride after 60 h at room
temperature. However, we were pleased to discover that, in the
presence of 5% of complexes1-4, acylation on carbon can be
achieved, proceeding to completion within 24 h (eq 2). Furthermore,
we obtain very good ee’s for reactions catalyzed by C5Ph5-bound
3 and4, with PPY derivative4 furnishing the highest enantiose-
lectivity (90% ee).

We have established that complex4 effectively catalyzes the
asymmetric intermolecular C-acylation of a range of silyl ketene

acetals, providing new quaternary stereocenters in good enantio-
meric excess (Table 1).12 The method accommodates an electroni-
cally (entries 1-3) and sterically (entries 4 and 5) diverse array of
aromatic substituents (R1). In addition, heteroaromatic groups are
tolerated (entries 6-9). At the end of the reaction, the catalyst can
be recovered in essentially quantitative yield.

This new catalytic asymmetric process is not limited to acylations
of silyl ketene acetals derived from lactones. For example, PPY
derivative4 catalyzes the C-acylation of silyl ketene acetal8 (2:1
mixture of olefin isomers) with excellent enantiomeric excess (eq
3). Obtaining high ee and high yield establishes that both theE
and theZ isomers of substrate8 are being converted efficiently
into the same enantiomer of the product.13

Figure 1. Possible pathway for nucleophile-catalyzed asymmetric C-
acylation.

Table 1. Catalytic Enantioselective Intermolecular C-Acylation of
Silyl Ketene Acetals

entry R1 R % eea % yielda

1 Ph Me 90 80
2 4-(MeO)C6H4 Me 95 78
3 4-(F3C)C6H4 H 90 84
4 o-tolyl Me 95 89
5 1-naphthyl Me 99 82
6 2-thienyl Me 76 84
7 3-thienyl Me 87 86
8 3-thienyl H 80 73
9 3-(N-methylindolyl) Me 94 92

a Average of two runs.
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We have begun to pursue experiments designed to test the
mechanistic hypothesis outlined in Figure 1. Thus, we have
examined the reactivity of a silyl ketene acetal toward the various
acetylating systems illustrated in Table 2.14 In the absence of a
catalyst, treatment of the silyl ketene acetal with acetic anhydride
results in no detectable reaction after 60 h at room temperature
(entry 1). In contrast, the addition of 5% of catalyst4 leads to very
rapid acetylation (t1/2 ) 0.3 h; entry 2). Activation of the electrophile
(Ac2O f acylpyridinium) is not sufficient for achieving efficient
acylation- the silyl ketene acetal does not react with salt9 at
room temperature (entry 3). On the other hand, Me4N[OAc] is an
effective (non-enantioselective) catalyst for the reaction (entry 4).
Taken together, the data provided in Table 2 indicate that it is the
combinationof the acylpyridinium ion and the acetate ion that is
responsible for the dramatic rate acceleration and high enantiose-
lectivity that we observe in the presence of catalyst4.15

In conclusion, we have developed a new process- a nucleophile-
catalyzed intermolecular C-acylation of silyl ketene acetals by
anhydrides. Through mechanistic studies, we have provided support
for the hypothesis that the reaction involves activation of both the
anhydride (formation of an acylpyridinium ion) and the silyl ketene
acetal (generation of an enolate). Furthermore, we have demon-
strated that a catalytic asymmetric variant of this new transformation
can be achieved, furnishing a new carbon-carbon bond and a
quaternary stereocenter with very good enantioselection. Additional
synthetic and mechanistic studies are underway.
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Table 2. Evidence for Dual Activation: Reactivity of a Silyl Ketene
Acetal toward Several Potential Acetylating Agents

entry acetylating agent t1/2 for reaction

1 Ac2O <2% conversion (60 h)
2 Ac2O; 5% (-)-4 0.3 h
3 (+)-9 <2% conversion (60 h)
4 Ac2O; 5% [Me4N]OAc <0.1 h
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